GenLayer Testing Suite Reference
This document describes the key components and methods available in the GenLayer Test SDK for testing Intelligent Contracts.
For comprehensive test examples and implementation patterns, see our Test Suite Examples (opens in a new tab).
Installation
pip install genlayer-test
Configuration
The GenLayer Testing Suite can be configured using an optional gltest.config.yaml
file in your project root. While not required, this file helps manage network configurations, contract paths, and environment settings.
Configuration File Structure
# gltest.config.yaml
networks:
default: localnet # Default network to use
localnet: # Local development network configuration (pre-configured)
url: "http://127.0.0.1:4000/api"
leader_only: false # Run in leader-only mode by default
studionet: # Studio network configuration (pre-configured)
# Pre-configured network - accounts are automatically generated
# You can override any settings if needed
testnet_asimov: # Test network configuration (pre-configured)
# Pre-configured network - requires accounts to be specified
accounts:
- "${ACCOUNT_PRIVATE_KEY_1}"
- "${ACCOUNT_PRIVATE_KEY_2}"
- "${ACCOUNT_PRIVATE_KEY_3}"
from: "${ACCOUNT_PRIVATE_KEY_2}" # Optional: specify default account
custom_network: # Custom network configuration
id: 1234
url: "http://custom.network:8545"
accounts:
- "${CUSTOM_ACCOUNT_1}"
- "${CUSTOM_ACCOUNT_2}"
from: "${CUSTOM_ACCOUNT_1}" # Optional: specify default account
paths:
contracts: "contracts" # Path to your contracts directory
artifacts: "artifacts" # Path to your artifacts directory
environment: .env # Path to your environment file containing private keys and other secrets
Configuration Sections
-
Networks: Define different network environments
default
: Specifies which network to use by default- Pre-configured networks:
localnet
: Local development network with auto-generated test accountsstudionet
: GenLayer Studio network with auto-generated test accountstestnet_asimov
: Public test network (requires account configuration)
- Network configurations can include:
url
: The RPC endpoint for the network (optional for pre-configured networks)id
: Chain ID (optional for pre-configured networks)accounts
: List of account private keys (using environment variables)from
: Which account to use by default for transactions (optional; defaults to first account)leader_only
: Whether to run deployments/writes only on the leader node
- For custom networks (non-pre-configured),
id
,url
, andaccounts
are required fields
-
Paths: Define important directory paths
contracts
: Location of your contract filesartifacts
: Location to store analysis results and artifacts
-
Environment: Path to your
.env
file containing sensitive information like private keys
If you don't provide a config file, the suite will use default values. You can override these settings using command-line arguments.
General
create_account
Creates a new account for testing purposes.
from gltest import create_account
account = create_account()
Parameters: None
Returns: A new account object
get_default_account
Returns the default account used to execute transactions when no account is specified.
from gltest import get_default_account
default_account = get_default_account()
Parameters: None
Returns: The default account object
get_accounts
Returns a collection of accounts available for testing. When a gltest.config.yaml
file is present with account private keys defined for the current network, this function will return those loaded accounts. By design, the first account is the default account.
from gltest import get_accounts, get_default_account
accounts = get_accounts()
default_account = get_default_account()
assert default_account == accounts[0]
other_account = accounts[1] # Get a different account
assert default_account != other_account
Parameters: None
Returns: A list of account objects loaded from the private keys defined in gltest.config.yaml
for the current network, or pre-created test accounts if no config is present
Contract Interaction
For the following code examples, we'll use a Storage Intelligent Contract as a reference:
# { "Depends": "py-genlayer:test" }
from genlayer import *
class Storage(gl.Contract):
# State variable to store data
storage: str
# Constructor - initializes the contract state
def __init__(self, initial_storage: str):
self.storage = initial_storage
# Read method - marked with @gl.public.view decorator
@gl.public.view
def get_storage(self) -> str:
return self.storage
# Write method - marked with @gl.public.write decorator
@gl.public.write
def update_storage(self, new_storage: str) -> None:
self.storage = new_storage
Contract Factory
The Contract Factory is used to deploy and build Contract objects that can interact with Intelligent Contract methods.
get_contract_factory
Retrieves a contract factory for a specific contract.
from gltest import get_contract_factory
def test_get_factory():
factory = get_contract_factory('Storage')
Parameters:
contract_name
: The name of the contract class to instantiate
Returns: A Contract Factory instance
deploy
Deploys a new contract instance and returns a Contract object.
from gltest import get_contract_factory, create_account
def test_deploy_contract():
factory = get_contract_factory('Storage')
custom_account = create_account()
contract = factory.deploy(
args=["initial_value"], # Constructor arguments
account=custom_account, # Account to deploy from
consensus_max_rotations=3, # Optional: max consensus rotations
)
Parameters:
args
: Contract constructor argumentsaccount
: (Optional) Account to use for deploymentconsensus_max_rotations
: (Optional) Maximum number of consensus rotationswait_interval
: (Optional) Wait interval in milliseconds for transaction statuswait_retries
: (Optional) Number of retries for transaction statuswait_transaction_status
: (Optional) Desired transaction status
Returns: A Contract object
build_contract
Builds a Contract object from an existing deployed contract.
from gltest import get_contract_factory, create_account
def test_build_contract():
factory = get_contract_factory('Storage')
custom_account = create_account()
contract = factory.build_contract(
contract_address="0xabcd...z",
account=custom_account # Optional: use this for subsequent transaction calls
)
Parameters:
contract_address
: The address of the deployed contractaccount
: (Optional) Account to use for contract interactions
Returns: A Contract object
Contract Methods
read methods
Calls read-only methods on the contract.
from gltest import get_contract_factory
def test_read_methods():
factory = get_contract_factory('Storage')
contract = factory.deploy(args=["initial_value"])
# Call a read-only method
result = contract.get_storage(args=[]).call()
assert result == "initial_value"
Parameters:
args
: Method arguments
Returns: The result of the contract read call
write methods
Calls state-modifying methods on the contract.
from gltest import get_contract_factory
from gltest.assertions import tx_execution_succeeded
def test_write_methods():
factory = get_contract_factory("Storage")
contract = factory.deploy(args=["initial_value"])
# Call a write method with arguments
tx_receipt = contract.update_storage(
args=["new_value"], # Method arguments
).transact(
value=0, # Optional amount of native token to send
consensus_max_rotations=3,
wait_interval=1,
wait_retries=10,
)
# Verify the transaction was successful
assert tx_execution_succeeded(tx_receipt)
# Verify the value was updated
assert contract.get_storage().call() == "new_value"
Parameters:
args
: Method argumentsvalue
: (Optional) Amount of native token to send with the transactionconsensus_max_rotations
: (Optional) Maximum number of consensus rotationswait_interval
: (Optional) Wait interval in milliseconds for transaction statuswait_retries
: (Optional) Number of retries for transaction statuswait_transaction_status
: (Optional) Desired transaction statuswait_triggered_transactions
: (Optional) Whether to wait for triggered transactionswait_triggered_transactions_status
: (Optional) Desired triggered transaction status
Returns: The transaction receipt
connect
Creates a new contract instance that uses a different account for transactions.
from gltest import create_account
other_account = create_account()
contract_with_other_account = contract.connect(other_account)
Parameters:
account
: Account to use for contract interactions
Returns: A new Contract instance using the specified account
Helpers
load_fixture
Runs a fixture function and returns its value at the same state in every test. load_fixture
sets up the state on its first call and returns to that state in subsequent tests. This is particularly useful for setting up test environments that need to be in a consistent state across multiple tests.
Environment Behavior:
- Local Studio: The fixture's state is preserved between test runs, allowing for consistent test environments.
- Hosted Studio: When using
https://studio.genlayer.com/api
, the fixture executes independently for each test run without state preservation.
from gltest import get_contract_factory
from gltest.helpers import load_fixture
from gltest.assertions import tx_execution_succeeded
# Define a fixture that deploys a contract
def deploy_contract():
factory = get_contract_factory("Storage")
contract = factory.deploy(args=["initial_value"])
return contract
# Test A: Verify initial state
def test_initial_state():
# Load the fixture - will deploy contract on first run
storage_contract = load_fixture(deploy_contract)
# Verify initial state
current_storage = storage_contract.get_storage(args=[]).call()
assert current_storage == "initial_value"
# Test B: Verify state persistence and updates
def test_state_updates():
# Load the same fixture - will reuse deployed contract
storage_contract = load_fixture(deploy_contract)
# Verify initial state is preserved
current_storage = storage_contract.get_storage(args=[]).call()
assert current_storage == "initial_value"
# Update the storage
tx_receipt = storage_contract.update_storage(
args=["new_value"]
).transact()
# Verify the update was successful
assert tx_execution_succeeded(tx_receipt)
assert storage_contract.get_storage().call() == "new_value"
Fixtures
The GenLayer Testing Suite provides reusable pytest fixtures in gltest.fixtures
to simplify common testing operations. These fixtures can be imported and used in your test files to avoid repetitive setup code.
Available Fixtures
gl_client
(session scope): GenLayer client instance for network operationsdefault_account
(session scope): Default account for testing and deploymentsaccounts
(session scope): List of test accounts for multi-account scenariossetup_validators
(function scope): Function to create test validators for LLM operations
gl_client
Provides a GenLayer PY client instance that's created once per test session.
def test_client_operations(gl_client):
tx_hash = "0x1234..."
transaction = gl_client.get_transaction(tx_hash)
default_account
Default account used when no account is specified.
def test_with_default_account(default_account):
factory = get_contract_factory("MyContract")
contract = factory.deploy(account=default_account)
accounts
List of account objects loaded from the current network config or pre-created test accounts.
def test_multiple_accounts(accounts):
sender = accounts[0]
receiver = accounts[1]
tx_receipt = contract.transfer(args=[receiver.address, 100]).transact()
setup_validators
Creates test validators for localnet environment. Useful for testing LLM-based contract methods and consensus behavior.
def test_with_validators(setup_validators):
# Default configuration
setup_validators()
# With custom mock responses and validator count
mock_response = {"result": "mocked LLM response"}
setup_validators(mock_response=mock_response, n_validators=3)
contract = factory.deploy()
result = contract.llm_based_method()
Parameters for setup_validators
:
mock_response
(dict, optional): Mock validator response when using--test-with-mocks
n_validators
(int, optional): Number of validators to create (default: 5)
Assertions
Assertions are utility functions to verify the outcome of contract transactions in your tests.
tx_execution_succeeded
Asserts that a transaction executed successfully.
from gltest.assertions import tx_execution_succeeded
assert tx_execution_succeeded(tx_receipt)
You can also match specific patterns in the transaction's stdout output:
# Simple string matching
assert tx_execution_succeeded(tx_receipt, match_std_out="Process completed")
# Regex pattern matching
assert tx_execution_succeeded(tx_receipt, match_std_out=r".*code \d+")
Statistical Analysis with .analyze()
The .analyze()
method performs statistical analysis for contract methods over multiple runs. This is particularly useful for testing LLM-based contracts where outputs may vary.
from gltest import get_contract_factory
def test_analyze_method():
factory = get_contract_factory("LlmContract")
contract = factory.deploy()
analysis = contract.process_with_llm(args=["input_data"]).analyze(
provider="openai",
model="gpt-4o",
runs=100,
config=None,
plugin=None,
plugin_config=None,
)
print(f"Method: {analysis.method}")
print(f"Success rate: {analysis.success_rate:.2f}%")
print(f"Reliability score: {analysis.reliability_score:.2f}%")
print(f"Unique states: {analysis.unique_states}")
print(f"Execution time: {analysis.execution_time:.1f}s")
The analysis returns a summary object with:
- method, args
- total_runs, successful_runs, failed_runs
- unique_states, reliability_score
- execution_time
tx_execution_failed
Asserts that a transaction execution failed.
from gltest.assertions import tx_execution_failed
assert tx_execution_failed(tx_receipt)
Mock LLM Responses
The Mock LLM system allows you to simulate Large Language Model responses in GenLayer tests. This enables deterministic tests by providing predefined responses instead of relying on actual LLM calls.
Basic Structure
mock_response = {
"response": {}, # Optional: mocks gl.nondet.exec_prompt
"eq_principle_prompt_comparative": {}, # Optional: mocks gl.eq_principle.prompt_comparative
"eq_principle_prompt_non_comparative": {} # Optional: mocks gl.eq_principle.prompt_non_comparative
}
setup_validators(mock_response)
Method Mappings
- "response" -> gl.nondet.exec_prompt
- "eq_principle_prompt_comparative" -> gl.eq_principle.prompt_comparative
- "eq_principle_prompt_non_comparative" -> gl.eq_principle.prompt_non_comparative
How It Works
The mock system performs substring matching on the internally constructed user message. If a key in your mock dictionary is contained within the actual user message, the associated response is returned.
Substring Matching Examples
Will work (partial match):
"eq_principle_prompt_comparative": {
"The value of give_coin": True
}
Won't work (extra words break the match):
"eq_principle_prompt_comparative": {
"The good value of give_coin": True
}
Complete Example
from gltest import get_contract_factory
def test_with_mocked_llm(setup_validators):
mock_response = {
"response": {
"What is the weather?": "It's sunny today",
"Calculate 2+2": "4"
},
"eq_principle_prompt_comparative": {
"values must be equal": True,
"amounts should match": False
},
"eq_principle_prompt_non_comparative": {
"Is this valid?": True
}
}
setup_validators(mock_response)
factory = get_contract_factory("MyLLMContract")
contract = factory.deploy()
result = contract.check_weather()
Notes:
- Mock responses are available when running tests on localnet
- Use with the
--test-with-mocks
flag to enable mocking
You can also match specific patterns in the transaction's stderr output:
# Simple string matching
assert tx_execution_failed(tx_receipt, match_std_err="Warning: deprecated")
# Regex pattern matching
assert tx_execution_failed(tx_receipt, match_std_err=r"Method.*failed")
Parameters:
transaction_receipt
: The transaction receipt object to checkmatch_std_out
(optional): String or regex pattern to match in stdoutmatch_std_err
(optional): String or regex pattern to match in stderr
Returns: True
if the transaction failed and patterns match (if provided), otherwise False
Note: The stdout/stderr matching feature is only available when running on studionet and localnet. These features are not supported on testnet.
Running Tests
The GenLayer Test SDK provides a command-line interface for executing tests with various configurations.
Basic Usage
Run all tests in the current directory:
gltest
Run a specific test file:
gltest tests/test_mycontract.py
Test Execution Control
Filter tests by markers:
gltest -m "integration" # Run only tests marked as integration
Control test output verbosity:
gltest -v # Enable verbose output
gltest -vv # Enable more verbose output
Configuration Options
Specify a custom contracts directory (default: contracts/
):
gltest --contracts-dir <path_to_contracts>
Specify artifacts directory (default: artifacts/
):
gltest --artifacts-dir <path_to_artifacts>
Select a network configuration from your gltest.config.yaml
:
# Run tests on localnet (default)
gltest --network localnet
# Run tests on Studio
gltest --network studionet
# Run tests on testnet
gltest --network testnet_asimov
Set a custom RPC endpoint:
gltest --rpc-url <custom_rpc_url>
Configure transaction receipt polling:
# Set the polling interval in milliseconds
gltest --default-wait-interval <milliseconds>
# Set the maximum number of polling attempts
gltest --default-wait-retries <number_of_retries>
Run tests with mocked LLM responses (localnet only):
gltest --test-with-mocks
Run tests with leader-only mode enabled (studio-based networks only: localhost, 127.0.0.1, *.genlayer.com, *.genlayerlabs.com):
gltest --leader-only
When enabled, deployments and write operations run only on the leader node. On unsupported networks, this flag has no effect and a warning is logged.
Note: All configuration options can be combined. For example:
gltest -v --network testnet_asimov --default-wait-interval 1000